
A second year progress report on:

Development of a Dynamically Configurable,
Object-Oriented Framework for Distributed,
Multi-modal Computational Aerospace
Systems Simulation

Abdollah A. Afjeh, Ph.D.
John A. Reed, Ph.D.

Department of Mechanical, Industrial and Manufacturing Engineering
The University of Toledo

September 7,2001

Summary
This report describes the progress made in the second year (Sept. 1,2000 to Aug. 31,2001) of work at The
University of Toledo under the NASA Information Technology (IT) Program grant number NAG-1-2244.
This research is aimed at developing a new and advanced simulation framework that will significantly
improve the overall efficiency of aerospace systems design and development. This objective will be
accomplished through an innovative integration of object-oriented and Web-based technologies with both
new and proven simulation methodologies. The basic approach involves three major areas of research:

Aerospace system and component representation using a hierarchical object-oriented component
model which enables the use of multimodels and enforces component interoperability.

Collaborative software environment that streamlines the process of developing, sharing and
integrating aerospace design and analysis models.

Development of a distributed infrastructure which enables Web-based exchange of models to simplify
the collaborative design process, and to support computationally intensive aerospace design and
analysis processes.

Research for the second year focused on enabling models developed in the Dennli software environment to
directly access CAD native geometry. Access to CAD geometry is essential to generate mesh for use in
fluid and structural analysis of aerospace systems, as well as visualization of analysis results. Furthermore,
a geometry-centric modeling approach, as employed in this work, simplifies use of these and other tools in a
multidisciplinary design process. Finally, direct access to CAD native geometry, compared to geometry
described in intermediate forms (e.g., IGES['I* STEP[*], STL13], etc.), is more robust.

NAG-1-2244 2nd Year Report 1 September 7,2001

Year 2 Accomplishments

CAD

In trod iiction
Computational simulation plays an essential role in the aerospace design process. Computer-aided design
(CAD) methods are the basic tool for definition and control of the configuration, ard CAD solid modeling
capabilities enable designers to create virtual mockups of system to verify that no .nterferences exist in
part layouts. Similarly, structural analysis is almost entirely performed using con;xtational tools
employing finite element methods. Computational simulation is also employed :c model fluid dynamics.
However, computation fluid dynamic (CFD) tools are not as widely applied in the zesign process as either
CAD or structural analysis tools due, in part, to the long set-up times and high COS:^ (both human and
computational) associated with complex fluid flow.[']

' * Meshing + Solving I + Iisualization

The conventional steps for CFD, structural analysis, and other disciplines in the design process are: 1)
surface generation, 2) mesh generation, 3) obtaining a solution, and 4) post-processing visualization.
Surfaces of the domain to be analyzed (e.g., a turbine blade passage) are generated from a CAD system.
These surfaces are used to create a domain (i.e., a closed volume) of interest which is discretized in one of
many different manners to form a mesh. The mesh, along with boundary informZ?on, is used by a
numerical solver to obtain a solution to the governing equations over the entire 1-c:ilme. This solution and
mesh are then displayed graphically, allowing the user to examine the results ani: 2xtract the data needed
to understand the domain physics. This process is illustrated in Fig. 1. Data are trznsmitted between these
steps via files; for example, output from a CAD system might be in the form of I G E file(s), which are read
by the mesh generator. Similarly, the mesh generator, solvers and visualization took would each generate
output and read input in a variev of formats.

Mesh generation has long been recognized as a bottleneck in the CFD process.['; :?lule much research on
automating the volume mesh generation process have been relatively successful. r5ese methods rely on
appropriate initial surface triangulation to work properly. Surface discretization ;7'j been one of the least
automated steps in computational simulation due to its dependence on implicitl:: iefined CAD surfaces
and curves. Differences in CAD peometry engines manifest themselves in discrerzcies in their
interpretation of the same entities. This lack of "good" geometry causes signific2.r.r ?roblems for mesh
generators, requiring users to "repair" the CAD geometry before mesh generatior.. The problem is
exacerbated when CAD geomem is translated to other forms (e.g., IGES which La not include important
topological and construction information in addition to entity geometry. t61

One technique to avoid these problems is to access the CAD geometry directly frcm the mesh generating
software, rather than through files. By accessing the geometry model (not a discrefzed version) in its
native environment, t h s a proach avoids translation to a format which can deplere the model of
topological information. [6 f

Our approach to enable models developed in the Denali software environment to iirectly access CAD
geometry and functions is through an Application Programming Interface (API) h o w n as CAPRI.171
CAPRI provides a layer of indirection through which CAD-specific data may be accessed by an
application program using CAD-system neutral C and FORTRAN language funceon calls. CAPRI
supports a general set of CAD operations such as truth testing, geometry construction and entity queries.

- - - - Data transfer via files

Figure 1: Conventional Analysis Process (Ref. [7])

NAG-1-2244 2nd Year Report 2 September 7,2001

CAD
L

Figure 2: CAPRI-based Analysis Process (Ref. [7])

Meshing w Solving Visualization

CAPRI isolates the top level applications (mesh generators, solvers, and visualization programs) from the
geometry engine (see Fig. 2) . It also allows the replacement of one geometry kernel with another, without
affecting the top-level application. Additionally, CAPRI allows non-geometry information, such as
material or condition information (e.g., temperature) to be attached to the geometry entities.

i A
I

CAPRI API
4
7
I - Geo. Kernel t * Geo. Database

A geometry-centric approach, such as the one supported by CAPRI, is vital to foster concurrent
engineering, especially in multidisciplinary aerospace design. This approach allows requisi:? information,
both geometric and non-geometric, to be captured and used in the design process. For exam?le, a CFD
solver, using the supplied mesh, would generate a solution consisting of fluid properties (e.g.,
temperature, pressure, etc.) for each volume. Ths data is attached to appropriate mesh vol.;nes through
CAPRI, and accessed by other applications through context-specific views of the CAPRI data. For example,
a CFD visualization application program would obtain the geometry directly (through CAPRI) from the
CAD geometry kernel while the CFD data would be supplied from CAPRI attachments.

Implementation Details: Overviezo
We have designed and implemented a basic object-oriented architecture to allow both Der.2-i models and
external application programs to access geometry data through the CAPRI API. Figure 3 ii:,strates a
simplified view of the architecture participants. The designer directs the Client, which is eiri.,er a Denali
model or external application program, to generate a mesh for a specific CAD part. The MeshGenerator is
responsible for generating an appropriate mesh given a CAD part, and is done in conjuncEcn with the
CAPRI middleware and a CAD geometry kernel (such as UniGraphics Parasolid). The generated mesh is
returned to the Client and passed to the Analysis Controller (it may also be viewed at this !me by a
visualization tool). The Analysis Controller uses the mesh to perform an engineering analJ-sis, such as
CFD. At the end of each time-step or the end of the analysis, CFD data is attached to geomerry via calls to
CAPRI. The mesh, attached CFD information, and geometry boundary surfaces data are retrieved by a
Visualizer which displays the simulation results to the designer.

Mesh Generation
A general class structure has been developed to frame the mesh generation process using C.\PRI (see Fig.
4). The MeshGeneratorMgr class provides a single access point (implemented as a Singleton object) for
clients to obtain a mesh from a CAD part. There are many different techniques for generating a mesh, so
Denali allows users to specify a particular mesh generation technique as implemented by a lava class.
These different classes can be dynamically plugged into the Denali framework so long as they subclass the
abstract MeshGenerator class. In Fig. 4, the MeshGenerator class has been subclassed by the
DenaliMeshGenerator class, which defines concrete implementations of MeshGenerator abstract methods
(indicated by italics). MeshGenerator subclass’ can use whatever means they wish to generate a mesh; this
allows the use of existing IGES- and STEP-based tools. In our research we have written a simple Java mesh

NAG-1-2244 2nd Year Report 3 September 7,2001

Client Mesh Generator
initiate _ - - - _

1 1.'

MeshGeneratorMgr

generator

setGenerator ()

getGenerator (1

A
designer

MeshGenera t o r

mesh

se tMesh ()

ge tMesh I)
genera teMesh (I

i

DenaliMeshGenerator -

/ - -7 * - - .

Capri

transfer mesh I
/ transfer mesh I

initiate

- - _ _ _ - - transfer solution - - _ _ _ - -
Analysis Controller Visualizer

Figure 3: Global view of architecture

generator based on constrained Delaunay triangulation. The generator, which is implemented in the
DenaliMeshGenerator class, utilizes CAPRI to access native CAD geometry and generate a mesh. The
Capri class is a Java wrapper which duplicates the CAPRI API function call list and accesses the CAPRI
C-language function calls through the Java Native Interface (JNI).

Using CAPRI, the DenaiMeshGenerator loads a CAD part, then retrieves a list of volumes from CAPRI.
For each volume, CAPRI returns a simplical decomposition of each of the CAD face entities. Each of these
triangulations are manifold with respect to their CAD edges. Typically, the triangulation is irregular and
planar regions are decomposed into as few triangles as possible. A new mesh with higher quality is
constructed by creating additional triangles using points on CAD faces obtained from CAPRI.

Since it was not our intent to write a robust and guaranteed-quality mesh generation tool, lve developed
the Delaunay triangulation mesh generator only to the point to demonstrate access to geometrl; through
CAPRI. In the future, we may choose to continue this work and improve upon it using the work ot'
Ruppert['I, Chew["] and Aftosmis.["].

NAG-1-2244 2nd Year Report

setMeshl)
getMesh ()

generateMesh ()

Figure 4: Mesh generation class structure

4

uStart t)
uLoadParz ()

dGetVolune ()
qPointOnFace ()

September 7,2001

Visirdization
As indicated above, visualization tools are essential to view solver solutions overlaid on geometry and
mesh data. One visualization tool, called the Gcornctry Viezorr, is a stand-alone visual interface and
debugging aid provided with CAPRI. It is similar to the Visual3 program[”] used for scientific
visualization, but is limited to viewing meshes and geometry. We have loosely integrated the Geometry
Viewer withn the Denali framework so as to demonstrate the ability to visualize geometry and mesh
using the CAPRI library.

One of the goals of the Denali framework was to provide a platform-independent system for aerospace
design. Towards that end we have endeavored to use JavaTh’ as much as possible in developing the
framework. However, in some cases, no Java-based tool were available; this is currently the case with
visualization tools. It is sometimes possible to partition the non-Java software into a client-server
architecture with the non-Java software located on a centralized machine made accessible via RMI or
CORBX. However, it appears that this is not currently possible with existing visualization tools.
Consequently we are exploring the possibility of developing a visualization tool similar to Visital3 or the
Geometry Viewer using Java, and in particular, the Java3D
users to install platform-specific visualization tools on each desktop using Denali in order to view
geometry and/or simulation solutions.

Alternatively, we will have to require

Plans for Year 3
The majority of work in year 3 will focus on the development of aircraft models for use in Denali. In
anticipation of the year 3 work, we have licensed the Base of Aircraft Data (BADA) from the
Eurocontrol Experimental Centre (EEC). The Base of Aircraft Data (BADA) provides a set of ASCII
files containing performance and operating procedure coefficients for 186 different aircraft types. The
coefficients include those used to calculate thrust, drag and fuel flow and those used to specify
nominal cruise, climb and descent speeds.
We will continue to work on implementing a database management system based on the Java Data
Objects (JDO) specification.[’] The final JDO specification is expected to be released soon, and we will
be evaluating different implementations of the specification to see which is best for supporting Denali.
We will also be working on integrating more robust grid generator and visualization tools which
utilize the CAPRI interface.

References
REED, K., 1991, ”The Initial Graphics Exchange Specification (IGES) Version 5.1.”
STEP, 1994, “Industrial automation systems and integration - Product data representation and
exchange -- Part 1: Overview and fundamental principles,” ISO/TR 10303-1. International Standards
Org. Geneve, Switzerland.
STL, 1988, Stereolithography Interface Format Specification, 3D Systems, Inc.
JAMESON, A., 1999, “Reengineering the Design Process Through Computation,” I. Aircraft,

COSNER, R., 1994, “Issues in aerospace application of CFD analysis,” AIAA Paper No. 94-0464.
AFTOSMIS, M.J., DELANAYAE, M., AND HAIMES, R., 1999, “Automatic Generation of CFD-Ready
Surface Triangulations from CAD Geometry,” AIAA Paper No. 99-0776.
HAIMES, R. AND FOLLEN, G., 1998, “Computational Analysis PRogramming Interface,” Proc. of the 6th
ltiternational Conference on Numerical Grid Generation in Computational Sitnillation Fields, Eds. Cross,
Eiseman, Hauser, Soni and Thompson.
JAVA DATA OBJECTS, “JSR 12: Java Data Objects (JDO) Specification,” http:/ /jcp.org/jsr/detail/
012.jsp
RUPPERT, J. 1995, “A Delaunay Refinement Algorithm for Quality 2-Dimensional Mesh Generation,”
J. Algorithms, vol. 18, no. 3, pp. 548-585.

V O ~ . 36, pp. 36-50.

NAG-1-2244 2nd Year Report 5 September 7,2001

[lo]

[ll]

[12]

[13]

CHEW, L. P., 1993, ”Guaranteed-quality mesh generation for curved surfaces,” Proc. of the Ninth
Annual Symposium on Computational Geometry, pp. 274-280, ACM.
AFTOSMIS, M.J., 1999, “On the Use of CAD-Native Predicates and Geometry in Surface Meshing,”

HAIMES, R., 1991, “Visual3: Interactive Unsteady Unstructured 3D Visualization,” AIAA Paper No.

SOWIZRAL, H., RUSHFORTH, K., AND DEERING, M., 2000, The Java 3DTM API Specification, Second
Edition, Addison Wesley Longman, Inc. ISBN: 0-201-71041-2

NASA TM-1999-208782.

91-0794.

NAG-1-2244 2nd Year Report 6 September 7,2001

